Laboratory
Chromatography
Guide

Angelo Talamona
The present "Laboratory Chromatography Guide" is dedicated to preparative liquid chromatography, a common purification technique in most chemical or life science laboratories.

The performance of separations by chromatography is fairly well known in the scientific and industrial communities. Part 1, the "Flash Guide Basics", gives consideration to this fact, proceeding swiftly through flash chromatography with an emphasis on speed, reliability and reproducibility of the separation.

But there are no rules without exceptions! As usual, problems appear with the most exciting and valuable compounds you want to purify. Therefore, you are personally challenged to understand and solve the purification task as fast as possible. The second part "Preparative Column Chromatography: Theory and Practice" helps you to overcome such drawbacks and leads you back to the shining path of your privileged profession: to understand and explore what modern science offers!

We at Buchi, as a leading supplier of high quality laboratory products and responsive services, wish you a lot of challenging and successful work!

Dr. Ernst Freydl
Büchi Labortechnik AG

Author Angelo Talamona
Publisher Büchi Labortechnik AG, CH-9230 Flawil, Switzerland
Cover NOSE Applied Intelligence AG, CH-8005 Zürich, Switzerland
Layout Atelier Güttinger AG, CH-9030 Abtwil, Switzerland

First edition
Printed in Switzerland
94175 0105

ISBN 3-033-00339-7 © 2005 by Büchi Labortechnik AG, CH-9230 Flawil, Switzerland.

All rights reserved. No part of this publication may be reprinted, or reproduced, or utilized in any form or by any electronic or mechanical means – now known or hereafter invented –, including photocopying and recording, or in any information storage and retrieval system, without the publisher’s written permission.
“Laboratory Chromatography Guide” – A close look at preparative liquid chromatography

The present “Laboratory Chromatography Guide” is dedicated to preparative liquid chromatography, a common purification technique in most chemical or life science laboratories.

The performance of separations by chromatography is fairly well known in the scientific and industrial communities. Part 1, the “Flash Guide Basics”, gives consideration to this fact, proceeding swiftly through flash chromatography with an emphasis on speed, reliability and reproducibility of the separation.

But there are no rules without exceptions! As usual, problems appear with the most exciting and valuable compounds you want to purify. Therefore, you are personally challenged to understand and solve the purification task as fast as possible. The second part “Preparative Column Chromatography: Theory and Practice” helps you to overcome such drawbacks and leads you back to the shining path of your privileged profession: to understand and explore what modern science offers!

We at Buchi, as a leading supplier of high quality laboratory products and responsive services, wish you a lot of challenging and successful work!

Dr. Ernst Freydl
Büchi Labortechnik AG
Part 1 **Flash Guide**
Basics

1 **Introduction**

2 **Principle of chromatography**

3 **Choice of the appropriate stationary phase**

4 **Evaluation of the chromatographic system by thin-layer chromatography**
 4.1 Evaluation of the stationary phase
 4.2 Selectivity of the solvent
 4.3 Solvent strength

5 **Injection/Column loading**

6 **Gradient elution**
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Factors affecting chromatographic separation</td>
<td>64</td>
</tr>
<tr>
<td>8.1</td>
<td>Capacity factor (k')</td>
<td>66</td>
</tr>
<tr>
<td>8.2</td>
<td>Separation factor (\alpha) (selectivity factor)</td>
<td>67</td>
</tr>
<tr>
<td>8.3</td>
<td>Effect of (\alpha) and (k') on the resolution</td>
<td>72</td>
</tr>
<tr>
<td>8.4</td>
<td>Effect of (\alpha) and (k') on the number of theoretical plates (N)</td>
<td>73</td>
</tr>
<tr>
<td>8.5</td>
<td>Effect of particle size on the column efficiency</td>
<td>74</td>
</tr>
<tr>
<td>8.6</td>
<td>Effect of flow rate on the column efficiency</td>
<td>76</td>
</tr>
<tr>
<td>8.7</td>
<td>Effect of column length on the number of theoretical plates</td>
<td>77</td>
</tr>
<tr>
<td>8.8</td>
<td>Effect of column length on the resolution</td>
<td>77</td>
</tr>
<tr>
<td>8.9</td>
<td>Chromatography with several columns in series</td>
<td>79</td>
</tr>
<tr>
<td>8.10</td>
<td>Loading</td>
<td>80</td>
</tr>
</tbody>
</table>

9	Thin-layer chromatography as a pilot method for column chromatography	81
9.1	Introduction to thin-layer chromatography	81
9.2	Interpretation of TLC information	82
9.2.1	Calculation of the \(R_f \) value	82
9.2.2	Calculation of the separation factor \(\alpha \), capacity factor \(k' \) and plate number \(N \)	83
9.2.3	Resolution – Relationship of \(\alpha \) and \(N \) to resolution	84
9.3	Evaluation of stationary and mobile phase by means of TLC	85

| 10 | Choice of the appropriate column | 88 |

11	Packing and conditioning of the column	89
11.1	General aspects	89
11.2	Dry packing method for glass columns	90
11.3	Packing method with Büchi Cartridger C-670	92
11.4	Slurry packing method for silica	93
11.5	Packing method for soft and rigid gels	94
11.6	Conditioning dry-packed columns	96
11.7	Conditioning slurry-packed columns	96
11.8	Conditioning gel columns	96

12	Column test	97
12.1	General aspects	97
12.2	Test mixtures	98
12.2.1	Test mixtures for normal phase columns	98
12.2.2	Test mixtures for reversed phase columns	100
12.2.3	Test mixtures for size exclusion gels	101
12.2.4	Examples of test chromatograms	101

13	Cleaning of columns	102
13.1	Cleaning of normal phase columns	102
13.2	Cleaning of reversed phase columns	103
13.3	Cleaning of gel columns	103

| 14 | Equipment description | 104 |

| 15 | Examples | 106 |
Abbreviations

TLC Thin-layer chromatography
HPLC High-performance liquid chromatography
\([C]_{\text{phase 1}}\) Concentration of the compound C in phase 1
GC Gas chromatography
RPC Reversed phase chromatography
S_i Solvent strength
RI Refractive index
S.I. Symmetry index
F_m Delivery rate
V_0 Dead volume
GLP Good laboratory practice
MPLC Medium pressure liquid chromatography
LC Liquid chromatography
UV Ultraviolet
Introduction

Chromatography has developed very rapidly over the past few years. It was a very long way from the first “capillary pictures” of Runge (1822–1850) through the early work of Tswett, the discoverer of Adsorption Chromatography (1903, separation of plant pigments) to modern HPLC from about 1967. Tswett had in fact adopted the name “Chromatography” for this separation technique (from the Greek chromos = colors, graphein = write).

However, the focal point of this enormous development was clearly in the area of analysis. In preparative chemistry, on the other hand, chromatographic separations are frequently carried out even today by a very simple method, i.e. with the aid of a simple glass column under hydrostatic pressure. The first publications on preparative chromatography under elevated pressure, so-called Flash Chromatography, only appeared towards the end of the seventies. This method too was subsequently further refined. This finally resulted in medium pressure liquid chromatography (called MPLC in the following), which is very efficient but nevertheless readily comprehensible and simple to carry out. At the same time, attempts were made to increase the size of the analytical HPLC systems and thus make them available also for preparative or at least semi-preparative work.

However, closer scrutiny reveals substantial differences between routine analysis and preparative separation. It is therefore essential for a preparative MPLC system to meet the specific requirements for such separations. The following factors must be noted in particular:

- Flexibility in the choice of column. The amount of substance and the required separating power differ for virtually every problem to be solved. Simple and economical adaptation to the particular separation problem must therefore be possible.
- High delivery of the pump. Large columns require large volume flows so that the desired linear flow rate can be achieved.
- Wide pressure range. The trend in preparative chromatography is clearly towards fine-grained adsorbents, which offer substantial resistance to flow.
- The apparatus must be simple to handle. In particular, filling and emptying of the columns as well as operation of the entire remaining system must be capable of being mastered immediately without a prolonged familiarization period. In the preparative laboratory, the liquid chromatography is in general not a specialized unit but rather a universal tool.
This booklet aims to provide both non-specialists and specialists with short and basic as well as with more detailed explanations of the different procedure steps encountered during a liquid chromatography separation.

The first part, “Quick Guide”, is a short, practice-oriented overview of liquid chromatography (LC) for quick reference searches and the second part provides a broader and deeper description of the process, under both practical and theoretical considerations.
Flash Guide
Basics
1 Introduction

Chromatography is a standard method used in preparative laboratories to isolate and purify substances. In the early days of chromatography simple glass columns were chiefly used, operated by means of the hydrostatic pressure of the solvent acting as an eluent. In a publication in 1978 Clark W. Still explored the possibility of accelerating the separation process in simple glass columns, which was until then the commonly used method, and thereby considerably increasing the efficiency of the technique. The results were convincing and the foundations of modern flash chromatography were laid. It triumphantly established itself in laboratories as an indispensable purification method in preparative chemistry. Flash chromatography has since undergone constant development, and has been adapted to meet present day expectations in terms of equipment and convenience.

Figure 1: From the simple glass column to modern flash chromatography.

Modern flash chromatography systems are popular nowadays because they are simple to handle, flexible and can be universally employed. The first part of this brochure aims to give simple, accessible advice, which should ideally instantly lead to effective laboratory elutions.
The following abbreviations are used in the first part:

TLC Thin-layer chromatography
RP Reversed phase, modified silica gels
NP Normal phase polar silica gel phases
UV Ultraviolet
S_i Solvent strength (substitutes polarity)
% A % solvent with low solvent strength
% B % solvent with high solvent strength
Rf Retention factor (from thin-layer chromatograms)
CV Column volumes
ΔCV Difference in column volumes
Rf_1 Retention factor of first substance (substance which spreads onto the TLC plate the quickest. The index increases according to the time the substance takes to spread).
2 Principle of chromatography

Chromatographic separation is based on a balanced state among the components to be separated, an adsorbent agent in the column (= stationary phase) and a solvent flowing through it (mobile phase). When a component settles on the stationary phase this is defined as adsorption, while detachment by the mobile phase is defined as desorption. A high adsorption capacity between the components of interest and the stationary phase means that there is a high retention of these components and that there is a considerable delay in elution from the column. The separation of a mixture into its individual components is only possible if the individual components in a combination of stationary and mobile phases have different adsorption/desorption properties.

Figure 2: Adsorption und Desorption, schematic illustration of the chromatographic separation process.
3 **Choice of the appropriate stationary phase**

Chromatographic separation can be carried out on both polar and apolar stationary phases, and suitable sorbents are available from various manufacturers.

“Standard” chromatography requires the use of polar stationary phases such as silica gel and nonpolar solvents. The individual components are delayed as a result of a reaction between the polar function component groups and the polar groups of the sorbent. Low polarity substances are eluted first, followed by components of increasing size.

In “reversed phase” chromatography, however, the stationary phase is nonpolar and elution is by means of polar solvents. These stationary phases are produced by modifying silica gel with nonpolar groups such as C-18 or similar substances. Substances are eluted in order of decreasing polarity from reversed phase columns, i.e. the substance with the highest polarity appears first. Reversed phase materials are considerably more expensive than standard stationary phases, and this is one of the reasons why standard stationary phases are primarily used in flash chromatography. If the substance classes to be separated allow, modified stationary phases can nonetheless be used without restrictions or problems.

![Figure 3: Elution sequence for normal silica gel.](image)
4 **Evaluation of the chromatographic system by thin-layer chromatography (TLC)**

As mentioned earlier, most elutions in flash chromatography use normal silica gel, or modified silica gel in special cases or for highly polar substances. In all these cases it is advisable to carry out a thorough TLC pre-elution so that, with a minimum investment of time and material, promising elution conditions can be found, which can then be applied to the cartridge. The following applies:

1. Define stationary phase
2. Find mobile phase with best selectivity
3. Set solvent strength

Ideally the sorbents on the TLC plate and in the cartridge should be identical (type and pore size) so as to successfully apply TLC conditions to the cartridge!

4.1 **Evaluation of the stationary phase**

The laboratory’s experience with TLC tests, with which most laboratories are familiar, can help to you make the right choice. If TLC plates with normal silica gel are used for the tests, column separation can also be carried out using normal silica gel. If the results of this prove unsatisfactory, it is then advisable to switch to RP plates.

4.2 **Selectivity of the solvent**

Once the stationary phase has been established the mobile phase with the most suitable selectivity needs to be found, i.e. the solvent or solvent mixture that isolates the substance of interest on...
the TLC plate with the greatest possible distance to the adjacent components.

In general every solvent has its own defined selective properties; some tend to be similar to each other, while others can differ greatly. L.R. Snyder and J.J. Kirkland investigated and compared the properties resulting from various solvents and grouped solvents with similar effects together into what are known as Selectivity Groups.

The selectivity groups allow us to focus our search. There is little point in comparing different solvents from the same selectivity group, as they all have the same properties. What we have to do is compare solvents from the various selectivity groups, as this is the only way to see the difference immediately. The most important solvents for our separation are compiled in the following table. This only shows solvents that are suitable for separation with UV detection, and do not make detection impossible as a result of high energy absorption.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Group</th>
<th>Strength S_i</th>
<th>UV limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>–</td>
<td>0.1</td>
<td>200</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>–</td>
<td>0.2</td>
<td>210</td>
</tr>
<tr>
<td>Diisopropyl ether</td>
<td>I</td>
<td>2.4</td>
<td>220</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>I</td>
<td>2.8</td>
<td>220</td>
</tr>
<tr>
<td>Ethanol</td>
<td>II</td>
<td>4.3</td>
<td>200</td>
</tr>
<tr>
<td>Methanol</td>
<td>II</td>
<td>5.1</td>
<td>200</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>III</td>
<td>4.0</td>
<td>220</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>IV</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>V</td>
<td>3.1</td>
<td>250</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>VI</td>
<td>4.4</td>
<td>260</td>
</tr>
<tr>
<td>Aceton</td>
<td>VI</td>
<td>5.1</td>
<td>330</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>VI</td>
<td>5.8</td>
<td>210</td>
</tr>
<tr>
<td>Toluene</td>
<td>VII</td>
<td>2.4</td>
<td>290</td>
</tr>
<tr>
<td>Xylene</td>
<td>VII</td>
<td>2.5</td>
<td>290</td>
</tr>
<tr>
<td>Chloroform</td>
<td>VIII</td>
<td>4.1</td>
<td>250</td>
</tr>
</tbody>
</table>

Depending on the polarity of the components to be separated, the entire mixture can flow onto the TLC plate with the solvent front; the solvent is too strong and the TLC separation cannot be assessed in this form. In these cases the solvent strength is reduced by diluting the solvent with hexane, for instance, and the TLC separation is then repeated.
4.3 **Solvent strength**

Every solvent has its own characteristic strength (which used to be known as its polarity). The higher the figure, the stronger the solvent and the quicker substances are transported through the chromatographic system. Rapid transport through the column does however mean that there is less interaction between the stationary and the mobile phase, and that the separation is therefore not as effective. It is thus very important to have the correct solvent strength so as to achieve optimum separation results.
Table 2: Strengths of the most common solvents.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Group</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>–</td>
<td>0.2</td>
</tr>
<tr>
<td>Diisopropyl ether</td>
<td>I</td>
<td>2.4</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>I</td>
<td>2.8</td>
</tr>
<tr>
<td>Ethanol</td>
<td>II</td>
<td>4.3</td>
</tr>
<tr>
<td>Methanol</td>
<td>II</td>
<td>5.1</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>III</td>
<td>4.0</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>IV</td>
<td>6.0</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>V</td>
<td>3.1</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>VI</td>
<td>4.4</td>
</tr>
<tr>
<td>Aceton</td>
<td>VI</td>
<td>5.1</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>VI</td>
<td>5.8</td>
</tr>
<tr>
<td>Toluene</td>
<td>VII</td>
<td>2.4</td>
</tr>
<tr>
<td>Xylene</td>
<td>VII</td>
<td>2.5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>VIII</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Using this table, solvents with different selectivity and usually with different strengths can be set at identical solvent strengths and thereby directly compared by mixing them with unselective solvents such as hexane. The diagram in figure 8 shows the mixing ratios for the most common solvents.

\[
S_i = \frac{\% \text{ solvent } A}{100} + \frac{\% \text{ solvent } B}{100} \quad B = \text{Solvent with higher polarity}
\]

Figure 7:
Setting the solvent strength.
1 = Ethyl acetate
2 = Chloroform
3 = Tetrahydrofuran
4 = Dichloromethane
5 = Diisopropyl ether
solvent strength should be set so that the resulting substances are approximately 0.15–0.4.

Why such low Rf values? The reason for this is evident if we look at the relationship between Rf values and column volume (CV).

An Rf value of 1 in the TLC means that the corresponding substance with the solvent front is flowing. The substance would also move with the solvent front in a flash cartridge and after 1 column volume would leave the cartridge. At an Rf value of 0.1 the flow distance is \(\frac{1}{10} \) of the front distance – the substance would need 10 times longer to reach the front or in turn to reach the column exit, i.e. 10 column volumes. The substance would be held back for much longer and other components would therefore be separated.

The following applies to the relationship between column volume and the Rf value:

- Column volume CV = \(\frac{1}{Rf} \)
- Rf value ranging from 0.15–0.4, corresponding to 2.5–6.6 column volume.

Table 3: Correlation of Rf values and column volumes.

<table>
<thead>
<tr>
<th>Rf value</th>
<th>Column volume CV</th>
<th>Rf value</th>
<th>Column volume CV</th>
<th>Rf value</th>
<th>Column volume CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.11</td>
<td>0.6</td>
<td>1.67</td>
<td>0.3</td>
<td>3.33</td>
</tr>
<tr>
<td>0.8</td>
<td>1.25</td>
<td>0.5</td>
<td>2.00</td>
<td>0.2</td>
<td>5.00</td>
</tr>
<tr>
<td>0.7</td>
<td>1.43</td>
<td>0.4</td>
<td>2.50</td>
<td>0.1</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Summary
Optimize the TLC conditions by applying the following rules:
1. Use identical silica gels if at all possible (same type and pore size) for TLC plates and flash cartridges. Different silica gels behave differently.
2. Look for suitable selectivity. The ideal selectivity separates the components of interest well before adjacent components or impurities. The greater the difference, the more efficient the flash separation.
3. Optimize the solvent strength. Ideal solvent strengths display
Rf values ranging from 0.15–0.4 in TLC for the components of interest; the ΔCV > 1.
Apply these conditions to the flash cartridge.

Example of pre-elution using TLC and transferring the results to a Büchi cartridge

Step 1: Selectivity

<table>
<thead>
<tr>
<th>Substance</th>
<th>TLC 1</th>
<th>TLC 2</th>
<th>TLC 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rf</td>
<td>CV</td>
<td>ΔCV</td>
</tr>
<tr>
<td>1</td>
<td>0.54</td>
<td>1.8</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.43</td>
<td>2.3</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.34</td>
<td>2.9</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>8.7</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>6.2</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Figure 9

Figure 10:
Evaluation of the mobile phases in terms of selectivity and assessment.
1 = ethyl acetate
2 = disisopropyl ether
3 = chloroform
4 = dichloromethane

TLC 2 clearly displays the best selectivity. TLC 4 was not evaluated.
Injecting the sample is usually a simple procedure in analytical chromatography. The quantities to be injected are low and solubility is hardly an issue. In preparative separations, on the other hand, the columns are overloaded and the injection of the sample is of primary importance. When loading the column the mixture to be separated should be applied to the column bed in as compact a form as possible, i.e. in a narrow horizontal band. Preparative separations are usually in larger quantities, i.e. grams.

For a long time the general rule for preparative separations was that a column can be loaded with an approximately 1% mixture, in terms of the silica gel level. The use of modern flash systems and optimizing the mobile phase (Rf 0.04–0.4, CV > 1) means that nowadays the load can be increased to up to 10% – separation is faster and more cost effective – more efficient all round!

Step 2: Solvent strength

<table>
<thead>
<tr>
<th>Substance</th>
<th>TLC</th>
<th>CV</th>
<th>ΔCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.37</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>8.4</td>
<td>16.8</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>25.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11: Setting the solvent strength. The ratio of hexane/diisopropyl ether = 3:1. Components 2 and 3 are of interest.

Step 3: Applying result to the cartridge

![Diagram of applying conditions to a Büchi flash cartridge](image)

Figure 12: Applying the conditions to a Büchi flash cartridge 12x150 mm. Eluent = hexane/diisopropyl ether 3:1, flow rate 14 ml/min, detection = UV 254 nm.
5 Injection/Column loading

Injecting the sample is usually a simple procedure in analytical chromatography. The quantities to be injected are low and solubility is hardly an issue.

In preparative separations, on the other hand, the columns are overloaded and the injection of the sample is of primary importance.

When loading the column the mixture to be separated should be applied to the column bed in as compact a form as possible, i.e. in a narrow horizontal band. Preparative separations are usually in larger quantities, i.e. grams.

For a long time the general rule for preparative separations was that a column can be loaded with an approximately 1% mixture, in terms of the silica gel level. The use of modern flash systems and optimizing the mobile phase (Rf 0.04 – 0.4, CV > 1) means that nowadays the load can be increased to up to 10% – separation is faster and more cost effective – more efficient all round!

Table 4: Approximate values for loading at Rf = 0.15 – 0.4.

<table>
<thead>
<tr>
<th>(\Delta V_s)</th>
<th>Cartridge 12x75 mm</th>
<th>Cartridge 12x150 mm</th>
<th>Cartridge 40x75 mm</th>
<th>Cartridge 40x150 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.3</td>
<td>1.2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.6</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

* Values are given as a guide and depend on the silica gel used and the percentile sample composition

Example of preparative separation at high load

Optimizing the conditions on the TLC plate silica gel 60:
Hexane/diisopropyl ether 95:5 (CV > 1, \(\Delta CV > 1 \)).

<table>
<thead>
<tr>
<th>Substance</th>
<th>Rf</th>
<th>CV</th>
<th>(\Delta CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>1.05</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>0.48</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: Optimized conditions on TLC.
This simple and unconventional injection procedure is often used to inject by-products that are not easily dissolved to the separation column. These substances are usually heavily adsorbed in the area where they initially enter the column and remain there. This is, however, not a problem if disposable cartridges are used, as the cartridge is changed anyway after the components of interest have been eluted.

Special advice for injecting dissolved samples
In preparative chromatography, it is often not possible to spend the time pre-cleaning the samples and the mixtures are applied directly to the separation column with varying levels of accompanying substances. To ensure that the flash equipment operates smoothly it is therefore very important to rinse the injection port clean after every injection, regardless of whether it is a quick stop valve or a device fitted with a tap system. This is the only way to avoid problems such as sample contamination or leaking injection ports. The following should therefore be observed in the injection process:

1. Stop pump
2. Inject sample
3. Rinse injection port
4. Start pump

The volume must be low so that the sample can be compactly applied to the column bed. If the volume is too high, the band is considerably widened and the separation is less efficient.

The sample that is to be separated can be brought into the separation system either as a solution or dry, adsorbed by silica gel. A classical solution sample injection requires that the sample can be sufficiently dissolved in the starting eluent. The injection volume should be no more than 10% of the column volume. The following injection volumes apply to the Büchi cartridges:

<table>
<thead>
<tr>
<th>Cartridge</th>
<th>Cartridge</th>
<th>Cartridge</th>
<th>Cartridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>12x75 mm</td>
<td>12x150 mm</td>
<td>40x75 mm</td>
<td>40x150 mm</td>
</tr>
<tr>
<td>1.5 ml</td>
<td>2 ml</td>
<td>10 ml</td>
<td>20 ml</td>
</tr>
</tbody>
</table>

If the sample cannot be sufficiently dissolved in the starting eluent, dry application can be carried out, where the sample is dissolved in any solvent and mixed with silica gel. The solvent is then distilled off using rotation. This dry silica gel is packed into a pre-column and this is then fitted in front of the separation column into the eluent flow. The components to be separated are then constantly eluted from the precolumn to the actual separation column. This procedure is also advisable if there are sticky or solid impurities in the sample which cannot easily be removed!

Another slightly unconventional injection method for samples in the form of solutions is not to dissolve the sample in the starting eluent but in a completely different solvent with excellent dissolving properties for the mixture. This “foreign” solvent is separated in the separation flow as an additional component. Retention times are usually in the range of the solvent front. If the components of interest are optimized to an Rf range of 0.15–0.4, separating the front is not a problem anyway.
This simple and unconventional injection procedure is often used to inject by-products that are not easily dissolved to the separation column. These substances are usually heavily adsorbed in the area where they initially enter the column and remain there. This is not, however, a problem if disposable cartridges are used, as the cartridge is changed anyway after the components of interest have been eluted.

Special advice for injecting dissolved samples

In preparative chromatography, it is often not possible to spend the time pre-cleaning the samples and the mixtures are applied directly to the separation column with varying levels of accompanying substances. To ensure that the flash equipment operates smoothly it is therefore very important to **rinse the injection port clean after every injection, regardless of whether it is a quick stop valve or a device fitted with a tap system**. This is the only way to avoid problems such as sample contamination or leaking injection ports. The following should therefore be observed in the injection process:

1. Stop pump
2. Inject sample
3. Rinse injection port
4. Start pump

Figure 15: Liquid sample injection in toluol, eluent = hexane/diisopropyl ether 9:1.
6 **Gradient elution**

The examples given are all separated isocratically, i.e. the mobile phase is identical throughout the entire separation process. In practice this is, however, often not possible, as the substances to be separated in adsorption often differ.

Substances that cannot be successfully eluted isocratically can be identified by pre-elution using TLC, and can be optimised accordingly. The following example explains the procedure:

a) *Establishing the suitable selectivity (see 4.2).*

This is problematic – either the Rf values are so high that it is practically impossible to achieve separation with a preparative loading of the column, or the Rf values are so low that they can only be eluted from the column with a great deal of time and solvent.

Figure 16: Suitable selectivity using ethyl acetate.

Figure 17: Different solvent strengths, achieved using hexane with varying levels of ethyl acetate.
As there is no basic common denominator for the conditions, the Rf values for highly adsorbent and less adsorbent components are optimised separately (both Rf values from 0.15–0.04).

These are the conditions that apply when applying the separation to the column. The less adsorbent components are eluted with the weaker eluent. We then switch to the polar mobile phase (= higher level B). Depending on the equipment used, this switch can either be carried out gradually or in one step.

The following examples show how the separation can be affected by the choice of solvent strength. The level of ethyl acetate is entered in the chromatogram (% B).

Figure 18:
Selection the mobile phase for a step elution hexane with varying levels of ethyl acetate according to the indication on the TLC plate.

Figure 19:
Separation using a step gradient 10% B/25% B.
Figure 20:
Separation with a continuous gradient
10 ⇒ 20% B in 10 min,
20 ⇒ 45% B in 5 min,
then 45% B constant.

Figure 21:
Separation with continuous gradient
10% B for 9 min,
10 ⇒ 45% B in 8 min,
then 45% B constant.
Index

absorption 17, 54, 55, 114
adsorbent 14, 27, 40, 62, 74, 80, 115
adsorption chromatography 34, 40, 81
affinity chromatography 39, 51
agarose 39, 44
alumina 42, 53
anion exchange 39
appropriate column 88
boiling point 46, 51, 119
Büchi Cartridge C-670 92
capacity factor k' 66, 72, 83
cartridge 20, 92
cation exchange 39
charge-transfer complex 35
chemisorption 42
chromatogram 58, 105, 120
cleaning of columns 102
column 12, 23, 24, 58, 74ff, 88, 105
column efficiency 74ff
column length 61, 67, 77, 78, 79, 116
column packing 58ff, 89ff, 91
column test 97
columns in series 79
π-complex 35
conditioning 89, 96
conductivity detector 56
dead volume 37, 63, 123
delivery 77, 116
detection 17, 48, 54
dextran 44, 45
dipole 34, 48, 50, 51, 66, 67, 68
dipole interactions 34, 35
dry packing method 90
eluent 50, 66, 87, 119
eluotropic serie 49ff, 51, 119, 121
elution 26, 42, 43
elution sequence 15, 42, 43
elution time 47, 49
equipment 104
extinction 54, 55, 114, 121
flow rate 61, 74, 76, 77, 115, 116
formulae 110
fraction collector 104, 105
fraktogel 45
fronting 121
gel chromatography 36, 44, 51, 94, 119
GFC 44, 45, 101
Glatz 63
GPC 44, 45
Halász 74
Helmchen 63
Hildebrand 47, 70
hydrogen bridge bonds 35
increase factor 78, 79, 116
injection 23ff, 104
interpretation of TLC 82
ion-exchange chromatography 39
ionic strength 52
isocratic chromatography 121
linear flow rate 61, 74ff, 112, 115, 116
loading 23, 80
miscibility 46, 117
mobile phase 16ff, 27, 46ff, 61, 66ff, 85ff, 121
mobile phase reservoir 104
net retention time 112, 121
normal phase silica 40, 98
number of theoretical plates 60ff, 73, 76ff, 84, 110, 114, 115, 120
optimum plate height 75
packing method for soft and rigid gels 94
particle diameter 42, 62, 74
particle size 40, 41, 42, 61, 62, 74ff, 115
peak width at half height 59, 122
permeation volume 38
plate height 61, 74ff, 115
polarity 17ff, 47ff, 66ff, 122
polyacrylamide 44
polyamides 43
pore 36ff, 41, 61
proton (H)-acceptor 48, 50, 66ff, 117, 119
proton (H)-donor 48, 50, 66ff, 117, 119
pump 104
purity 32, 49, 64
reduced plate height 62
refractive index 51, 55, 119
refractive index detector 55
relative retention 67
resolution 62, 64, 72, 77ff, 84, 111, 116, 120
retention factor Rf 82
retention time 59, 67, 112, 122
reversed phase 43, 67, 100, 122
reversed phase chromatography 43, 50, 51, 66
SEC 37
selectivity 16ff, 42, 47ff, 70ff, 86, 118, 123
selectivity triangle 16, 48, 70, 85, 117
separation factor α 67, 72, 73, 83, 114
separation mechanisms 34ff, 81
sephadex 44, 95
sepharose 45
silica gels 35, 40ff
size exclusion chromatography 36ff
slurry 93ff, 123
slurry packing method 93
Snyder 17, 47, 48, 70, 85
solvent strength 16ff, 47ff, 70ff, 118
stationary phase 15, 40ff, 123
step gradient 27, 123
steric effects 35
symmetry index 59, 60, 62, 113
tailing 123
test chromatogram 98, 99, 100, 101
test mixture 98, 100, 101
theoretical plate number 60
thin-layer chromatography 16, 81ff
TLC optimization 83, 84
total permeation 37
transmittance 55, 114
UV absorption 54
UV detector 54, 55, 56
UV limit 17, 48, 50, 51, 70, 85, 118, 119
viscosity 51, 61, 119